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Abstract—A fully autonomous agent should reason about how
to deploy limited resources effectively in dynamic and uncer-
tain environments. Despite the focus on learning to act under
such constraints, the tactical use of resources in fast-evolving
scenarios (e.g., air combat) remains underexplored. Addressing
this challenge requires modeling how resource usage unfolds over
time and influences future behavior. To this end, we explore self-
supervised learning approaches tailored to modeling the causal
dependency and temporal relationship between these interrelated
processes. Specifically, we introduce TART, a Temporal Action
contrastive learning approach that facilitates semantic alignment
between Resource control and Tactical maneuvers. TART learns
via contrastive learning based on a mutual information objective,
carefully designed to account for both forward and backward
dependencies embedded within such dynamics. These learned
representations are quantized into discrete codebook entries that
serve as inputs to the policy, enabling us to model the multiple
tactical modes in downstream tasks. To empirically assess our
method, we present an air combat simulation environment where
tactical resource allocation is essential for mission success, using
customized scenarios of varying difficulty to compare against
baseline approaches. Extensive experiments demonstrate the
effectiveness of TART in the use of limited resources and superior
performance in generating tactical maneuvers.

I. INTRODUCTION

General autonomous robotic systems are required to operate
under limited resources due to constraints such as communi-
cation bandwidth, fuel, or cost [1, 2]. In static environments,
this challenge lies in the resource allocation problem involving
the assignment of resources or tasks to agents and high-level
operational planning, here referred to as strategic allocation.
Within such settings, optimization methods guided by appro-
priate constraints and planning with accurate system models
have been shown to be effective. In contrast, in dynamic
environments (e.g., air combat) where rapid decisions are
necessary, effective resource usage depends on detailed tactical
decisions, which we refer to as tactical allocation. Here,
agents must reason not only about how to use their resources
but also how such decisions influence subsequent maneuvers.

In such settings, hybrid action spaces naturally arise: dis-
crete actions govern resource usage (e.g., firing missiles),
while continuous actions control low-level behaviors [3, 5].
While reinforcement learning (RL) is well-suited to these
problems due to its adaptability, effective tactical resource al-
location presents three major challenges: causal dependency,
temporal understanding, and multi-modality as shown in
Fig. 1. Specifically, agents should understand the causal effects
of resource usage, reason over future results of current actions,
and account for the multi-modal nature of tactical behavior.
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Fig. 1: Key challenges in tactical resource allocation in air combat. The
agent fires a missile and must select an appropriate subsequent maneuver,
showing the causal dependency between resource usage and following
actions. Implicit reasoning about the missile’s effectiveness reflects the need
for temporal understanding. Multiple valid follow-up maneuvers highlight
the multi-modal nature of tactical decision-making.

For example, in air combat, deploying a high-impact resource
like a missile may lead to a variety of valid follow-up ma-
neuvers (see Fig. 3) depending on the evolving situation. The
agent must anticipate possible outcomes and choose the most
appropriate tactical maneuvers to fully exploit the advantage.

To address these challenges, we hypothesize that grouping
semantically similar actions in a latent space facilitates a better
understanding of temporal relationships critical for tactical
decision-making. In this paper, we introduce Temporal Action
representation learning for Resource control and Tactical
maneuver generation (TART). TART builds upon a mutual
information objective designed to reflect both forward and
backward dependencies between resource utilization and sub-
sequent maneuvers. To better capture fine-grained temporal
relationships, we extend this objective with a contrastive loss
that enforces similarity constraints across trajectories. The
resulting representations are quantized into discrete codes via
vector quantization, which are then used to condition the
policy to produce context-aware hybrid actions.

We construct a high-fidelity air-to-air combat environment
to evaluate tactical decision-making under discrete-continuous
action settings. The environment simulates engagements be-
tween fighter jets with realistic weapon and countermeasure
systems. The agent controls an F-16 aircraft equipped with
missiles, gunfire, and defensive systems such as chaff and
flares. To isolate the tactical aspects of decision-making, the
initial scenario configuration (e.g., position, resource avail-
ability) is fixed across episodes, allowing the agent to focus
exclusively on resource control and maneuver generation.
Through experiments, we demonstrate that TART outperforms
baselines, and analysis of the representations shows that TART
captures diverse tactical modes.



II. BACKGROUND

A. Parameterized Action Markov Decision Process

In this paper, we build on a Parameterized Action Markov
Decision Process (PAMDP) < S,H,P, γ,R >, defined with
a state space S, parameterized action space H, transition
function P : S×H×S → R, discounted factor γ ∈ [0, 1), and
reward function R : S ×H → R [3]. Specifically, we extend
the standard PAMDP framework to incorporate a discrete-
continuous hybrid action space H defined as:

H = {(k, xk) | k = (ad; ac), ad ∈ Ad, ac ∈ Ac, xk ∈ Xk} (1)

where Ad = {ad,1, ..., ad,m} is the m-dimension discrete
action set, Ac = {ac,1, ..., ac,n} is the n-dimension continuous
action set, and Xk is the corresponding parameter set for each
hybrid action identifier k. Note that discrete action controls m
types of resources, while continuous action controls n types
of low-level actions.

Such hybrid action spaces commonly emerge in real-world
tasks [3, 4, 5], which attract attention to the RL community.
The complexity of hybrid action spaces and the interde-
pendence among their components necessitate RL agents to
model these dependencies while preserving scalability and
stationarity [5]. To address these challenges, recent works
propose Q-learning [3], actor-critic [4] approaches to over-
come these challenges. Notably, Li et al. proposed HyAR [5]
that construct a latent embedding space for single-step actions
via conditional Variational Autoencoder (cVAE), successfully
resolving the redundancy issue in the enlarged action space.
Nevertheless, incorporating a separate generative model causes
considerable complexity and error accumulations, and single-
step representation remains insufficient to capture temporal
relationships.

III. METHODS
This section mainly introduces the overall theoretical frame-

work and the details of the implementation of TART. The key
idea of TART is to learn diverse tactical representations that
are informative about the hybrid action space. To enable TART
to effectively use limited resources, we introduce bidirectional
objectives based on mutual information, along with a practical
contrastive learning loss function. The disentangled represen-
tations are transformed into discrete, interpretable codebooks,
which condition a policy network to generate a multi-modal
hybrid action distribution. Fig. 2 provides an overview of the
proposed method.

A. Bidirectional Objective for Representation Learning

We begin by presenting the temporal contrastive learning
objectives of TART. The guiding principle of our method is
to learn state and action representations that capture tempo-
ral relationships and dependencies essential for learning the
optimal policy. To quantify the degree of the relationship,
we employ mutual information, denoted I(X;Y ), which is
a reparameterization-invariant measure of dependency:

I(X;Y ) = Ep(x,y) log
p(x, y)

p(x)p(y)
= H(X)−H(X|Y ), (2)

where X and Y represent either raw samples or stochas-
tic representations from a data distribution. We define the
state representations as zt = ϕ(st), and the hybrid action
representation as ut,d = ψ(at,d) for discrete actions and
ut,c = ψ(at,c) for continuous actions, where st, at,d, and
at,c denote the raw state and hybrid action components. Here,
ϕ and ψ serve as encoders for the state st, and the action
components at,d and at,c. We then propose two MI-based
objectives, each distinguished by their directional dependence
and formally defined in Equations (3) and (4). K denotes a
fixed hyperparameter for the predicted horizon.

Forward dynamics

Jfwd = I(ut+k,c; [zt, ut:t+K−1]), (3)

Inverse dynamics

Jinv = I(ut,d; [zt+K , ut:t+K−1 | zt]). (4)

Given an objective J, we define the optimal set of state and
action encoders ΦJ as those that jointly maximize J:

ΦJ = {(ϕ, ψ) ∈ F × G | (ϕ, ψ) ∈ argmax
ϕ′,ψ′

J(ϕ′, ψ′)}, (5)

where F and G denote the function classes from which
the state encoder ϕ and the action encoder ψ are chosen,
respectively. By extending the theorem from Rakely et al. [6],
we guarantee that if (ϕ, ψ) ∈ ΦJ, then the corresponding state-
action pair (st, at) leads to accurate estimate of the optimal
action-value function Q∗(st, at).

B. Contrastive Learning of Latent Action Representations
Since mutual information is typically intractable to compute

directly, we instead adopt InfoNCE [7] loss to derive and
optimize a tractable lower bound:

I(X;Y ) ≥ log(N)− LC , (6)

where N denotes the number of samples and LC is the In-
foNCE loss. We then organize the state-action representations
into an anchor w, a positive sample w+, and negative samples
w−. The InfoNCE loss encourages the anchor to be similar to
the positive while dissimilar to the negatives:

LC = − log
exp(sim(w,w+))

exp(sim(w,w+)) +
∑

w− exp(sim(w,w−))
, (7)

where sim(wi, wj) = w⊤
i Wwj is a learnable similarity func-

tion with parameter W .
Given two sets of state-action representations at time step t,

we define the contrastive loss separately for the forward and
inverse dynamics objectives. For the forward dynamics objec-
tive, we set the anchor as w = [zt, ut:t+K−1,d], the positive
as w+ = ut+k,c, and the negative w− as continuous actions
sampled from other trajectories or time steps. For the inverse
dynamics objective, the anchor is w = [zt+K , ut:t+K−1,c]
conditioned on zt; the positive is w+ = ut,d, and the negatives
w− are discrete actions sampled from the batch except ut,d.
Both objectives capture tactical modes, encouraging represen-
tation clustering via contrastive learning. Following TACO [8],
we augment positive pairs using temporally adjacent segments
within the same episode to improve sample efficiency.
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Fig. 2: Overview of TART: (1) The agent interacts with the environment and collects a set of trajectories {τi}. (2) A bidirectional objective guides the
clustering of given trajectories into multiple tactical modes through contrastive learning. The resulting distinct modes are then mapped to discrete vectors via
vector quantization (VQ). (3) A policy network distinguishes between the modes and generates multi-modal hybrid action distributions accordingly.

C. Learning Discrete Tactical Modes via Vector Quantization

To exploit the clustered action representations obtained via
contrastive learning, we aim to represent them as discrete
tactical modes that guide the policy in generating diverse
action distributions [9]. Let C = {c1, ..., cM} denote the set
of learnable codebook entries, where each ci ∈ Rd. Given
a state-action trajectory τt = {(st′ , at′), ..., (st, at)}, where
t′ = t − K + 1, we obtain state and action embedding
{zt′ , ..., zt} and {ut′ , ..., ut} via encoders ϕ and ψ as shown in
Section III.A. These sequences are fed into a learnable func-
tion f to produce a trajectory-level representation κ = f(τt).
The embedding κ is quantized by assigning it to the nearest
codebook entry ci based on Euclidean distance, resulting in a
discrete latent code q. This quantized code serves as a tactical
mode and is used to condition the policy πθ(ac, ad|s, q).

To learn effective quantized representations, we employ
the standard vector quantization objective, consisting of a
reconstruction loss and a commitment loss:

LV Q = ||κ− κ̂||2 + ||sg[κ]− ci||2 + β||κ− sg[ci]||2, (8)

where κ̂ is the reconstruction of the embedding from the
codebook, sg[·] denotes the stop-gradient operator, and β is
a hyperparameter that balances the commitment strength. The
VQ encoder is optimized to produce embeddings κ that closely
match their assigned codebook entries, while the codebook
itself adapts to reflect the encoder outputs. At inference time, a
trajectory segment is processed by VQ encoder and quantized
into its corresponding code q, which conditions the policy to
produce context-aware multi-modal hybrid actions.

IV. EXPERIMENTS

This section presents the empirical evaluation of TART
in a custom-designed air combat environment, conducted in
an online RL setting. Throughout all experiments, we use
Proximal Policy Optimization (PPO) [10] for the backbone
algorithm and fix the prediction horizon parameter to K = 10
and the commitment loss coefficient to β = 0.25. It is worth
noting that TART is designed to be compatible with any online
RL algorithm that supports hybrid action spaces.

A. Experimental Setup in Aerial Tactical Environments

We build a custom air combat environment upon the Light
Aircraft Game (LAG) [11] and NeuralPlane [12], simulating
F-16 fighter jets equipped with weapons and countermeasures.
Offensive systems include AIM-9M and AIM-120B missiles
with pursuit-point guidance and a gun system modeled after
the AlphaDogfight Trial [13]. Defensive systems include chaff
and flares to evade incoming missiles. The aircraft is controlled
via a hierarchical architecture following [14], where our online
RL agent acts as the high-level combat policy.

The environment follows the standard PAMDP framework.
Following prior work [15], the state space S includes aircraft
dynamics and geometric configurations, remaining weapons,
and countermeasures. Discrete actions Ad include five options:
AIM-9M, AIM-120B, gunfire, chaff and flare, while continu-
ous actions Ac control three aircraft maneuver parameters. The
transition function P is defined by the simulator’s physics [16],
and the reward function R is designed to be sparse: agents re-
ceive positive rewards only when shooting down the opponent
and get negative rewards for being shot down, crashing, or
wasting munitions. To evaluate performance, we define two
hand-scripted opponents based on manually specified missile
launch conditions and maneuvering logic: Easy, Medium.
Agents are initialized with randomized altitudes, positions, and
orientations at the start of each episode and assessed by their
success in defeating these opponents.

B. Experimental Results

We compare TART against three reinforcement learning
baselines for hybrid action spaces: IPPO [4], IPPO-prior,
and HyAR [5]. IPPO extends PPO by separately handling
discrete and continuous actions. IPPO-prior augments domain
knowledge via a Bernoulli prior over discrete actions to im-
prove missile launch decisions. HyAR employs a conditional
Variational AutoEncoder (cVAE), enabling the generation of
continuous actions conditioned on discrete actions. As shown
in Table 1, TART achieves consistently higher win rates
against both hand-scripted opponents, demonstrating superior
tactical decision-making in hybrid action settings.
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Fig. 3: Visualization of distinct tactical modes learned by TART. Agents begin
from similar spatial configurations but differ in conditioning trajectories (e.g.,
past actions, remaining missiles). As a result, they are assigned to different
VQ codebook entries, inducing maneuvers with varying aspect angles. Shaded
regions show 2D ground-plane projections.

TABLE I: Win rates against hand-scripted opponents in an air combat
environment, evaluated over 3 random seeds.

Method Easy Medium

IPPO 74.0 ± 8.04 58.3 ± 11.14
IPPO-prior 88.3 ± 3.39 68.6 ± 7.58
HyAR 66.0 ± 6.37 69.3 ± 4.49
TART 97.6 ± 1.69 78.6 ± 2.4

To evaluate whether vector-quantized representation cap-
tures diverse tactical maneuvers, we analyze the Medium task.
Agents start from similar spatial configurations but differ in
two aspects: (1) the number of remaining missiles, which
serves as conditioning state input, and (2) the trajectory history
leading up to the current state. We examine how these factors
lead to the selection of VQ codebook indices and produce dis-
tinct trajectories. As shown in Fig. 3, the resulting trajectories
reflect semantically meaningful tactical variations. Notably,
selection of q1 correlates with lower missile availability, while
q2 corresponds to states with more remaining missiles.

V. CONCLUSION

In this paper, we introduce TART, a plug-and-play module
for hybrid action space reinforcement learning that enables
effective resource control and tactical maneuver generation.
TART is compatible with a variety of online RL algorithms and
performs well in a custom air combat environment. For future
work, we plan to develop a more challenging hand-scripted
opponent (Difficult) and incorporate self-play strategies to
further improve the agent’s tactical capabilities. We also aim to
explore alternative methods for multi-modal action generation
to better capture the diversity of tactical behaviors. These
directions offer promising avenues for applying TART to
broader resource-constrained decision-making tasks.
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