Sequence Modeling for Time-Optimal Quadrotor
Trajectory Optimization with Sampling-based
Robustness Analysis

Katherine Mao!, Hongzhan Yu?, Ruipeng Zhang?, Igor Spasojevic!,
M Ani Hsieh!, Sicun Gao?, and Vijay Kumar!

!'University of Pennsylvania, ?University of California San Diego

Abstract—Time-optimal trajectories drive quadrotors to their
dynamic limits, but computing such trajectories involves solving
non-convex problems via iterative nonlinear optimization, making
them prohibitively costly for real-time applications. In this work,
we investigate learning-based models that imitate an model-
based time-optimal trajectory planner to accelerate trajectory
generation. Given a dataset of collision-free geometric paths,
we show that modeling architectures can effectively learn the
patterns underlying time-optimal trajectories. We introduce a
quantitative framework to analyze local analytic properties of
the learned models, and link them to the Backward Reachable
Tube of the geometric tracking controller. To enhance robustness,
we propose a data augmentation scheme that applies random
perturbations to the input paths. Compared to classical planners,
our method achieves substantial speedups, and we validate its
real-time feasibility on a hardware quadrotor platform.

I. INTRODUCTION

Optimal trajectory generation is one of the core components
of an agile micro aerial vehicle’s (MAVs) autonomy stack.
Numerous applications such as search and rescue operations,
disaster response, and package and aid delivery require these
robots to perform tasks safely, at operational speeds. The key
algorithmic challenge underlying synthesizing time-optimal
trajectories lies in the non-convexity. A major part of non-
convexity is the nonlinear nature of robot dynamics. The ma-
jority of previous approaches have used either simplified dy-
namics models or proxy actuation constraints. Yet another set
of approaches planned trajectories with both faithful dynamics
models and suitable actuation constraints. Such planners have
exhibited superior mission execution time, at the cost of much
higher computational resources.

This is the first work to develop a learning-based algorithm
for computationally efficient time optimal path parametrization
for quadrotors with faithful dynamics model and actuation
constraints. A rigorous robustness analysis framework is pro-
posed to quantify how well predicted trajectories is dynami-
cally feasible, which inspires a data augmentation strategy that
enhances model robustness against unseen path geometries.
We perform both simulation and hardware experiments to
evaluate the proposed method.

II. RELATED WORK

The nature of time-optimal quadrotor trajectories requires
plans that push the system to its physical limits. Some ap-

proaches plan trajectories following a polynomial structure,
where trajectories are characterized by a set of waypoints and
their time allocations [1} [2]]. Other approaches plan around
the full dynamics to utilize the full flight profile of the
quadrotor [3 4], but require heavy computation cost due
to non-convexities, motivating the potential of learning-based
solutions. [3] trains an LSTM to learn both the intermediary
waypoints and time allocation for a polynomial trajectory. [6]]
utilizes Reinforcement Learning to generate near-time optimal
trajectories for the selected drone racing tracks, but cannot
guarantee saftey in cluttered environments.

III. PRELIMINARY

TOPPQuad [3]] is an optimization-based approach for Time-
Optimal Path Parameterization (TOPP) which generates dy-
namically feasible quadrotor trajectories to track a given path.
The key to this method is the squared-speed profile, h(:),
which dictates the relationship between traversal time and
the progress along a N-point discretized geometric path ~(-).
However, due to the non-convexity of the full dynamic model
and the desire for explicit bounds on actuation constraints, the
optimization must be performed upon an 16 x /N variable state
space, incurring heavy computation cost and slow runtime.
Conversely, [7] shows that a quadrotor is a differentially flat
system, where any trajectory can be uniquely represented by
four flat variables and their derivatives: position (x, ¥, z) and
yaw (0,). Given the nature of the TOPP problem and the
relationship between h and the higher positional derivatives,
the time optimal trajectory along a given path ~(-) can be
represented as function of just h and 6.

IV. METHODOLGY
A. Imitation Learning Problem Formulation

Given v(-), TOPPQuad produces a time-optimal, dynamic
feasible trajectory r(-), where dynamically feasibility is de-
fined as respecting all state and input constraints. However,
the variables are tightly coupled by the underlying dynamic
constraints, making it challenging to learn them jointly in
a direct manner. We propose to use [h(-),cosf.(-)] as the
output variables of the model, where cosf.(-) encodes the
yaw rotation encoded via the cosine function.

Min Snap Planner

Discretized waypoints

Input Path y(-)

SN —

position, velocity, acceleration

Trajectory Unrolling

I_> () =q() = w(),o'() - ul(~)

Velocity profile h(-)

Yaw profile cos 8,(-) SE(3)

Controller

LSTM Encoder

(VR > ... — B l
LSTM Decoder %

Output Trajectory 7(+)

Fig. 1. Overall pipeline. We begin by discretizing the input geometric path () into equally spaced grid points using a minimum-snap planner.
The trained neural planner then predicts squared-speed and yaw profiles, imitating the model-based time-optimal planner TOPPQuad [3].
The full robot state trajectory is unrolled and used by the low-level geometric controller to compute control inputs.

Next, we discuss how to recover the original variables. We
obtain the speed profile derivative R’ from finite differences of
the learned squared-speed profile h. To construct quaternion
q, we first compute the body z-axis vector by by adding
gravity to the derived acceleration (from speed profiles and
path curvature) and normalizing, ensuring bs aligns with the
net thrust vector. Then, q is derived via rotation composition,
aligning the drone’s body-z axis with b3 and setting yaw to
the desired 6,. Next, we calculate rotation, yielding angular
velocity w and its derivative w’. Finally, a low-level geometric
controller [8] computes u(-) from the derived states.

We augment the model’s input with path curvature, i.e., the
first and second derivatives of the geometric path +/(-) and
~"(+), to provide explicit geometric information. In summary,
we formulate the imitation task as learning the mapping:

(7' (), 7" ()] = [A(:), cos 0= ()], (1)

the minimal set of outputs necessary to reconstruct the time-
optimal path parameterization.

B. Robustness Analysis

To ensure effective generalization, it is crucial to thoroughly
evaluate the robustness of the learned models beyond empirical
performance metrics. Given a geometric path «(-), the model
predicts [h(-),cos 8, ()] from which we derive the robot state
trajectories r(-) := {h(-),q(-),w(-)}. Let #(-) denote the full
robot state trajectory after executing the error-tracking low-
level controller U [8]]:

P(siv1) = 7(si) (2)
As

[F s), U (7o + ds),r(s)) s

which integrates the quadrotor dynamics f over the spatial
step-size As. To formalize robustness, we introduce the con-

cept of Backward Reachable Tube (BRT) [9]: Let {y(x, At)
denote the subset of the state space from which state = can

be reached within A¢ seconds under U:

Eu(x, At) = {xo|37 < At, s.t. 2o(7) = 2 under U}. (3)

Proposition IV.1. Suppose ~(-) is a geometric path, and let
r(-) and 7(-) be the planned and the simulated trajectories,
respectively. If, for each i € {1,...,N — 1},

(i) € Eu(r(siv1), ti), (4)

where t; = 2As/(\/h(s;) + \/h(si4+1)), then the trajectory
planner is robust with respect to dynamic feasibility.

Proposition [[V.I] captures how violations in the planned state
are recoverable under the low-level controller. Even more, if
7(-) coincides with ~(-), then the tracking problem is solved.

Proposition IV.2. Suppose (-), r(-) and 7(-) satisfy Propo-
sition If, for each i € {1,..., N}, the robot’s coordinate
under 7(s;) matches exactly y(s;), then the trajectory planner
is robust for tracking () while respecting dynamic feasibiliry.

Deriving a finite-time BRT for the quadrotor, an under-
actuated non-linear system, is non-trivial. In this work, we
approximate the BRT via a sampling-based approach. Let
Y(xg,x, At) be a procedure that applies the low-level con-
troller U from initial state z to verify whether it can reach
target state = within time At. Formally, £.(z, At) comprises
all ¢ for which ¢ (xg, 2, At) holds. Hence:

Er(s).i(smry [1# <f(8i), r(sit1), m)])
= P’"(f(si) € £C(T(Si+1>7ti))'

We estimate this probability by sampling r(s;) and #(s;) from
the model predictions and simulating U to determine whether
7(s;) can reach r(s;11) within ¢;. However, the sequence space
of ~y is prohibitively large, making it hard to obtain an unbiased
probability estimate.

A more practical measure of planner robustness is the
variation in tracking robustness under small perturbations to

TOPPQuad ‘ LSTM Transformer ETransformer MLP

‘ Train Test Train Test Train Test Train Test

max dev (m) 0.053 0.074 0.143 0.607 0.649 0.195 0.226 0.252 0.305
thrust violation (N) 0.000 0.002 0.009 0.135 0.123 0.012 0.018 0.031 0.048
TD ratio (%) 5.929(s) -0.70% -0.40% -8.50% -2.35% 1.89% 2.49% -6.59% -3.03%
failure (%) 0.0% 2.0% 40% 76.0% 72.0% 6.0% 40% 0.0% 6.0%
compute time (s) 10.656 0.078 0.096 1.012 1.042 0.010 0.018 0.005 0.014

TABLE 1

ABLATION STUDY ON MODEL ARCHITECTURES (100 TRIALS).

the input paths. Define 7.(y) as the family of geometric paths
that deviate from ~(-) by at most € at each discrete step while
staying within the class of piece-wise polynomial paths.

Proposition IV.3. Suppose ~(-) is a geometric path. If, for
each 4 € me(y) and i € {1,...,. N — 1},
F(si) € &e(r(siv1), ti), (6)

where t; = 2As/(\/h(si)++/h(si+1)) and r(-), #(-) and h(-)
all correspond to 4, then the trajectory planner is e-robust with
respect to dynamic feasibility.

C. Robustness Enhancement via Noise Injection

Proposition inspires a new training scheme that aug-
ments the dataset with randomized path perturbations. Instead
of training exclusively on the original paths ~(-), we also
include the perturbed paths 4 € 7 () under a given per-
turbation scale e, targeting to predict the same ground-truth
[h(-),cos8,(-)] at v. To ensure practical feasibility, we adopt
the following assumption:

Assumption IV4. Let v(-) be a geometric path, and € be a
perturbation scale. For each 4 € 7 (), the control sequence
u(+) that is optimal for ~ remains e-robust for 4.

V. EXPERIMENTAL RESULTS

A. Simulation Experiments

We generate the training dataset from 10,000 TOPPQuad
trajectories bounded to 5m/s with minimum snap paths
through randomized waypoints. All simulation experiments are
conducted in RotorPy with CrazyFlie 2.0 parameters.

1) Architecture Ablation: We begin by describing the
candidate architectures. LSTM Encoder-Decoder uses an
LSTM encoder (with a non-parameterized attention mech-
anism equipped) mapping the input trajectory to a latent
representation, and an LSTM decoder to generate outputs
auto-regressively. Transformer Encoder-Decoder (denoted
as Transformer) uses self-attention in the encoder to cap-
ture intra-sequence dependencies, and cross-attention in the
decoder, trained via teacher forcing. Encoder-Only Trans-
former (denoted as ETransformer) removes the decoder alto-
gether to obviate the need for teacher forcing. Finally, Per-
Step MLP is a multilayer perceptron that predicts the outputs
at each discrete step individually.

To evaluate the trajectory planners, we measure the max-
imum deviation in position from the reference trajectories,
average thrust violation indicating adherence to actuation
constraints, and time-optimality by comparing travel Time
Difference ratio (TD ratio) with respect to TOPPQuad. An
attempt is classified as a failure if it leads to a crash, or if the
maximum position deviation exceeds 1 meter. We also report
the compute time required by each planner.

Table [I| presents the ablation results. LSTM achieves the
best performance among all candidates, with a maximum po-
sition deviation only 0.023m above TOPPQuad and negligible
thrust violation, resulting in an almost zero failure rate. The
slight reduction in travel time arises because the LSTM oc-
casionally yields velocities marginally above the 5m/s speed
limit. In contrast, Transformer has worse tracking accuracy
and higher failure rates, consistent with known difficulties in
training transformers via teacher forcing with limited data.
This aligns with the larger TDRatio, where a faster travel time
necessitates greater thrust bound violations. ETransformer
provides competitive results but still lags behind the LSTM in
tracking accuracy and time optimality. Finally, Per-Step MLP
struggles to track the reference trajectory precisely and incurs
high thrust violations as it must repeatedly base its predictions
on its own prior outputs, leading to out-of-distribution issues.

2) Robustness Analysis: Next, we conduct a robustness
analysis on the LSTM encoder-decoder model. We evaluate
both the model trained solely on clean data and two vari-
ants, LSTM-0.01 and LSTM-0.1, that incorporate randomized
path perturbations of scales 0.01 and 0.1, respectively, as
to augment training data. To evaluate robustness, we apply
controlled perturbations to the input geometric paths. Two
additional metrics are reported. First, output variation quan-
tifies the model sensitivity, computing the average of the
maximum absolute differences in model outputs. Second, in-
BRT probability assesses dynamic feasibility of the predicted
path parameterization, as defined in Section [[V-B

Table presents the robustness analysis results. When
trained exclusively on clean data, the model is highly sensitive
to input perturbations. Under ¢ = 0.001, its maximal position
deviation rises. Larger perturbations further degrade tracking
performance and reduce in-BRT probability, which indicates
a greater likelihood of generating dynamically infeasible pre-
dictions. In contrast, the models trained with augmented noisy

LSTM LSTM-0.01 LSTM-0.1
€ (perturbation scale) 0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1
max deviation (m) 0.234 0.790 0.739 0.094 0.093 0448 0.127 0.126 0.127
TD ratio (%) -0.13% 1.33% 321% 0.08% 0.09% 3.73% -0.07% 0.04% 0.29%
output variation 0.005 0.206 0.306 0.000 0.005 0.089 0.001 0.002 0.013
in-BRT probability (%) 90.0% 78.8% 70.0% 94.3% 94.5% 91.4% 92.4% 93.0% 92.9%
TABLE II

ROBUSTNESS ANALYSIS FOR THE LSTM ENCODER-DECODER MODEL (10 PERTURBATIONS PER TRIAL ACROSS 100 TRIALS).

TOPPQuad LSTM LSTM-0.01
max deviation (m) 0.347 0.355 0.372
travel time (s) 7.981 8.355 8.114
TABLE III

HARDWARE EXPERIMENTS (40 TRIALS).

0.0
X(m) 1.5 2

0.0
X(m) 15 2

Fig. 2. Experiment visualization, plotted from the collected flight
data. The dashed black line represents the reference geometric path.
The dashed blue and solid purple lines show the tracked trajectories
generated by TOPPQuad and by our method, respectively.

data yield improved output stability and in-BRT probabil-
ity. LSTM-0.1 consistently maintains low maximum position
deviations and high in-BRT probabilities. LSTM-0.01 also
shows enhanced robustness up to its training perturbation level.
Note that LSTM-0.1 trades off some tracking accuracy for
robustness, evident when examining low-perturbation regimes.

B. Hardware Experiments

Next, we validate our approach on hardware using a
CrazyFlie 2.0 quadrotor tracked in a Vicon motion capture
space. For safety, we limit the maximum speed to 2 m/s. Table
shows quantitative statistics, while Figure] provides visu-
alizations. Our method yields position deviations comparable
to TOPPQuad, while the travel time is suboptimal. Notably,
incorporating randomized path perturbations into the proposed
model leads to improved travel time.

VI. CONCLUSION

In this work, we propose an imitation-learning framework
for time-optimal quadrotor trajectory generation. We also
present a rigorous robustness analysis framework alongside a
data augmentation strategy that enhances model robustness.
Through comprehensive studies, our method is shown to
closely imitate a model-based trajectory planner, producing

near-optimal solutions that largely respect dynamic feasibility
and delivering a significant computational speedup over simi-
lar optimization-based methods.

REFERENCES

[1] Sikang Liu, Michael Watterson, Sarah Tang, and Vijay
Kumar. High speed navigation for quadrotors with limited
onboard sensing. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 1484-1491,
2016.

Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay
Kumar. Search-based motion planning for aggressive
flight in se(3). IEEE Robotics and Automation Letters,
3(3):2439-2446, 2018.

Katherine Mao, Igor Spasojevic, M. Ani Hsieh, and Vijay
Kumar. Toppquad: Dynamically-feasible time-optimal
path parametrization for quadrotors. In 2024 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 13136-13143, 2024.

Angel Romero, Sihao Sun, Philipp Foehn, and Davide
Scaramuzza. Model predictive contouring control for time-
optimal quadrotor flight. IEEE Transactions on Robotics,
38(6):3340-3356, 2022.

Yuwei Wu, Xiatao Sun, Igor Spasojevic, and Vijay Kumar.
Deep learning for optimization of trajectories for quadro-
tors. IEEE Robotics and Automation Letters, 9(3):2479—
2486, 2024.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio,
Matthias Miiller, Vladlen Koltun, and Davide Scaramuzza.
Champion-level drone racing using deep reinforcement
learning. Nature, 620(7976):982-987, 2023.

Daniel Mellinger and Vijay Kumar. Minimum snap trajec-
tory generation and control for quadrotors. In 2011 IEEE
International Conference on Robotics and Automation,
pages 2520-2525, 2011.

Michael Watterson and Vijay Kumar. Control of quadro-
tors using the hopf fibration on so (3). In Robotics
Research: The 18th International Symposium ISRR, pages
199-215. Springer, 2019.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tom-
lin. Hamilton-jacobi reachability: A brief overview and
recent advances. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pages 2242-2253. IEEE,
2017.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

	Introduction
	Related Work
	Preliminary
	Methodolgy
	Imitation Learning Problem Formulation
	Robustness Analysis
	Robustness Enhancement via Noise Injection

	Experimental Results
	Simulation Experiments
	Architecture Ablation
	Robustness Analysis

	Hardware Experiments

	Conclusion

