
Semi-Implicit Data-Driven Predictive Control for
Agile Flying and Beyond

Yuhao Huang, Yicheng Zeng, and Xiaobin Xiong
Department of Mechanical Engineering, University of Wisconsin-Madison

Lab Website: www.leggedai.com

Abstract—State-of-the-art model-based control strategies have
demonstrated success in enabling dynamic locomotion behaviors
such as flying, hopping, and walking in robotic systems. However,
the performance of these behaviors in practice remains inade-
quate, particularly due to the inherent discrepancies between the
modeled dynamics and the physical hardware, which inevitably
lead to trajectory tracking errors. To mitigate this issue, we pro-
pose a semi-implicit control framework that bridges the model-
to-real gap by incorporating a data-driven control approach
combined with the existing model-based design. We validate the
proposed method on PogoX, a custom-designed multi-modal lo-
comotion robot, demonstrating high-precision hopping and flying
behaviors in both simulation and real-world experiments. This
semi-implicit control paradigm offers a generalizable solution for
improving performance across a broad range of robotic platforms
and locomotion behaviors.

I. INTRODUCTION

Model-based control remains the foundation for achiev-
ing reliable, efficient, and safe behaviors in modern robotic
systems, particularly in flying [1], [2] and legged [3], [4]
platforms. These controllers rely on dynamic models—ranging
from simplified abstractions to full-order Lagrangian formula-
tions—that capture how input forces or torques influence the
robot’s states. Although grounded in physics, these models
inevitably deviate from reality due to unmodeled complexities
such as structural compliance, actuator limitations, and sensing
or computational delays [5], resulting in a persistent model-
to-real gap.

To mitigate this gap, implicit control approaches [6]–[9] that
leverage data for control have emerged as alternatives, learning
system dynamics [7] or control policies [8] directly from data.
However, these methods often replace the original model-
based controller, thereby forfeiting its theoretical guarantees
[10].

In this work, we aim to utilize the data-driven predict
control (DDPC) [11] techniques but keep the original model-
based control design intact to address tracking errors caused
by the model-to-real gap in robotic locomotion control. This
pipeline is named as the semi-implicit control framework as
illustrated in Fig. 1. We assume a model-based control design,
presented by the dashed box, has been synthesized to realize
robotic locomotion by performing trajectory tracking. The
model-to-real gap causes errors between the reference and
resultant trajectories. We then take a perspective of treating the
reference trajectory as the input and the resultant trajectory as
the output of the dashed-boxed system, for which we apply the

Fig. 1. Overview of the semi-implicit control approach (bottom) and the
application on PogoX (top).

data-driven predictive control which is a data-driven control
method to address the model discrepancy and realize hyper-
accurate trajectory tracking.

We leverage semi-implicit control to online realize precise
flying and hybrid locomotion behaviors like hopping of the
robot PogoX [12] in both simulation and hardware. The
original flying and hopping behaviors are realized by model-
based controllers, which produce inaccurate tracking due to
the model-to-real gap. We show that by utilizing the proposed
framework, the model-to-real gap is bridged and the tracking
accuracy is significantly improved. Moreover, to enable pre-
dictive control on hybrid locomotion behaviors, we present an
artificial input-output (IO) data generation process so that a
uniform DDPC controller can be used to realize control over
hybrid dynamics.

II. SEMI-IMPLICIT DDPC OF FLYING

In this section and the next, we describe the semi-implicit
control approach via DDPC for realizing flying of PogoX [12].
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A. Linear Flying Dynamics and Controller

We show that the closed-loop IO dynamics of PogoX
during flying can be approximated by an LTI system, which
rationalizes the application of DDPC for semi-implicit control.
Flying Dynamics: By assuming: (a) the robot operates with
small roll ϕ and pitch θ angles, where cosϕ ≈ 1, sinϕ ≈
ϕ, cos θ ≈ 1, sin θ ≈ θ; and (b) the cross product term of the
angular velocity is relatively small, robot dynamics is approx-
imately a linear dynamics [13]. The thrust force and moment
generated by the rotor can be modeled as F = kFω

2
rotor, where

kF is constant determined by the propeller, and ωrotor is the
rotor velocity [14]. Therefore, the motor dynamics and its
controller are all treated as linear.
Model-Based Flying Control Design: By assuming the robot
does not turn for simplicity, i.e. ψ = 0, the orientation is
represented with ZYX Euler angle. We choose the Euler angles
and total thrust, (ψ, θ, ϕ, F

∑
thrust), as the output of the flight

controller. To realize flying, a cascaded linear PD controller is
designed to stabilize the pose tracking [15].

B. Semi-Implicit Control via DDPC

We present a computationally efficient DDPC formulation
for realizing online semi-implicit control.

To apply the DDPC, we first off-line generate sufficient IO
data of the closed-loop system to realize flying behaviors to
construct the data-transition matrix offline. Then, we use the
data-transition matrix for semi-implicit control through DDPC:

min
u,y,σy

||y − ydes||2Q + ||u||2R + λσ||σy||2, (1)

s.t.
[
y
σy

]
= G

uini
yini
u

 , u ∈ U , y ∈ Y,

where ydes is the desired trajectory, u and y are commanded
trajectory and realized trajectory. G is named as the data-
transition matrix [16] and is computed offline. Solving this QP
online yields the control input u to steer the realized output y
towards the desired one ydes.

III. SEMI-IMPLICIT DDPC OF HYBRID LOCOMOTION

We propose a semi-implicit control strategy using DDPC to
achieve periodic hopping locomotion on PogoX. The robot’s
hybrid dynamics—comprising distinct aerial and ground
phases—pose a challenge to applying continuous predictive
control throughout the motion. To address this, we introduce
an ”artificial input-output (IO)” trajectory generation scheme
during the ground phase, enabling DDPC to perform continu-
ous control in the aerial phase.

A. Hybrid Dynamics and Hopping Control

Hybrid Dynamics of Hopping: Hopping involves hybrid
dynamics with two phases: aerial and ground [17]. The aerial
phase follows quadrotor dynamics, while the ground phase
includes ground reaction forces under a no-slip foot contact
assumption. Transitions are governed by a discrete impact map
(aerial to ground) and smooth lift-off (ground to aerial).

Model-Based Hopping Control Design: The hopping con-
troller is split into vertical height and leg angle control. Desired
vertical trajectories are optimized using the robot’s vertical
dynamics. Leg angles are modulated based on prior work [12]
and are used to regulate horizontal velocity through step-to-
step (S2S) dynamics-based control [18].

B. Semi-Implicit Control for Hybrid Locomotion

Due to the hybrid nature of hopping, the data-transition
matrix and IO data used for flying tasks cannot be directly ap-
plied to hopping, as the underlying dynamics differ. However,
since control is mainly applied during the aerial phase—where
the dynamics match those of flight—we focus on constructing
artificial IO data during the ground phase that mimics aerial
dynamics. By combining this with real IO data from the aerial
phase, we obtain continuous IO trajectories that reflect only
the aerial dynamics.
Artificial IO Data Generation: Our goal is to design
ug−ini, yg−ini that artificially represent the ground trajectories
using aerial dynamics. For each hopping, we formulate this
QP problem:

min
ug−ini,yg−ini,g

||g||2, (2)

s.t.
[
Up

Yp

]
g =

[
u<d,g,a>ini
y<d,g,a>ini

]
, u ∈ U , y ∈ Y,

where Up, Yp are the Hankel matrices [11] representing the
aerial dynamics, and the subscripts d, g, a denote the de-
scending, ground, and ascending phases, respectively. After
generating the initial ground-phase trajectories, an augmented
Hankel matrix is constructed by combining real aerial-phase
data with the generated ground-phase data.
Semi-Implicit Control Formulation for Hopping: The
DDPC problem, now including the ground phase, follows the
same formulation as in (1). The matrix G is computed offline
using the augmented Hankel matrix, enabling the QP to be
solved online in real time.

IV. RESULTS

In this section, we will present the results of our approach
for realizing trajectory tracking on PogoX in both simulation
and hardware. The hardware control is realized in ROS envi-
ronment.

A. Semi-Implicit Control for Flying

We first present the results of applying semi-implicit control
to the flying of PogoX. The input data are collected from the
desired z and θ trajectories that are mapped from RC control
inputs. The output data come from the direct measurement
of state estimator. The lower-level controller and its feedback
gains during data collection and experiment remain the same.

The robot is commanded to follow an ellipsoid trajectory
in its sagittal plane where the desired x−direction position
is transformed to the desired leg angle via a PD controller.
The initial trajectory length is set to 20, while the prediction
horizon is kept relatively short to 15 to enhance computational
efficiency.



Fig. 2. Results on flying: (a) depicts PogoX in flying and disturbance
injection; (b) compares the quality of trajectory tracking in x − z plane;
and (c) demonstrates how DDPC responds to disturbances in both height and
leg angle tracking.

Simulation: The height and leg angle reference tracking
performance can be seen in Fig. 2. As shown in the x − z
plot, the quadrotor failed to follow the correct trajectory due
to the introduced modeling error, and semi-implicit control via
DDPC steers it back to the desired height.
Hardware: The same controller and desired trajectory are used
on the hardware with additional disturbance forces applied to
the robot leg to disrupt both height and leg angle tracking.
The comparison of the robustness of the controller, with and
without DDPC, is shown in Fig. 2.

B. Semi-Implicit Control for Hopping

We now present the results of the periodic hopping behav-
iors. During both the data collection and experimental evalu-
ation, the robot is commanded to perform periodic hopping,
aiming to realize a desired apex height and a target horizontal
velocity. To ensure adequate coverage of a complete hopping
cycle, the prediction horizon is set to 25, and the initial
trajectory length is maintained at 20.
Simulation: Fig. 3 illustrates the performance of hopping be-
havior in simulation, with and without DDPC. It is evident that
with DDPC, height tracking is significantly improved, while
the leg angles maintain sufficiently accurate tracking perfor-
mance. With DDPC, the reference trajectories are steered to
higher targets to account for the tracking inaccuracies during
lift-off.
Hardware: The height and leg angle reference tracking perfor-
mance can be seen in Fig. 3. Similar to the simulation results,
the height and leg angle tracking have been significantly
improved, leading to better overall stabilization of step-to-step

Fig. 3. Results on periodic hopping: trajectories without reference-steering
(green) and with reference-steering (blue).

(S2S) dynamics and hopping behaviors. The steered output
demonstrates that DDPC can predict the mismatch between
the reference and actual trajectories, adjusting the reference
trajectory to better track the desired trajectories.

V. FUTURE WORK

Future work will focus on integrating the implicitly mod-
eled dynamics into the standard MPC framework to more
accurately capture the effects of robot-environment interaction
(REI), with particular emphasis on non-rigid contact dynamics.
This integration aims to enhance the controller’s ability to
reason about complex and compliant terrain interactions.

Furthermore, the proposed semi-implicit control framework
will be evaluated on more advanced robotic platforms and
behaviors, including an aerial-terrestrial variant of PogoX
equipped with a skate shoe consisting of two wheels beneath
the pogo stick, as illustrated in Fig. 4. This evaluation will
test the ability of the control pipeline to operate across multi-
modal locomotion, requiring smooth transitions and unified
control across both aerial, intermittent contact and continuous
contact phases.

Fig. 4. Locomotion of aerial-terrestrial version of PogoX.
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